Nanowire LEDs for RGB Lighting

Nathan Gardner Glo-USA, Inc.

Driving the SSL revolution

- Advantages of RGB+ to phosphor-converted approach:
 - Higher ultimate LED package efficiency (lm/W)
 - Tunable color
- Competition for linear fluorescent

Figure 5.5: White Light LED Package Efficacy Projections for Commercial Product

- "Qualified" data points are confirmed to satisfy the following criteria or may have been normalized for current density if not reported at 35 A/cm²:
- Cool White: CRI 70-80; CCT 4746-7040K
- Warm White: CRI 80-90; CCT 2580-3710K
- Current density: 35A/cm²
- These results are at 25°C package temperature, not steady state operating temperature. Thermal sensitivity may reduce efficacies by as much as 24 percent or so in normal operation, depending on luminaire thermal management.

Table 5.5: Tabulated Progress Projections for LED Package Efficacy (lm/W)

Metric	2011	2013	2015	2020	Goal
Cool White (Color-mixed)	135	164	190	235	266
Cool White	135	157	173	192	199
Warm White (Color- mixed)	97	129	162	224	266
Warm White (Phosphor)	98	126	150	185	199

Notes:

- Projections for cool white packages assume CCT=4746-7040K and CRI=70-80, while projections for warm white packages assume CCT=2580-3710K and CRI=80-90. All efficacy projections assume that packages are measured at 25°C with a drive current density of 35 A/cm².
- Asymptote for color mixed is 266 lm/W, and for phosphor-converted is 199 lm/W

U. S. Department of Energy, Solid-State Lighting Research and Development: Multi-Year Program Plan, April 2012

Arrays of Nanowires

Nanowire LED

Why Nanowire LEDs?

Main advantages:

- Active regions deposited on dislocation-free core
- Non-polar side facets
 - Less efficiency droop, helps with "green gap"
- Strain relaxation
 - More efficient green, amber, and red emitters
- Larger active region surface area, relative to substrate surface area

Green Gap

- In GaN should be great in the green! No indirect conduction band minima near the Γ minimum, as in AlInGaP
- Arguments proposed over the years as to why InGaN green does not meet our expectation:
 - Large bond distortion for In incorporation → film grown at low temperatures, causing other point defects to form (SRH centers)
 - Low radiative recombination efficiency due to quantum-confined Stark effect
 - Higher Auger recombination rate
- Why nanowires might help
 - 3D surface → strain relaxation
 - Higher radiative recombination rate → SRH less important; carrier density kept below point where Auger kicks in

Krames, et al., IEEE J. Display Tech., June 2007 High-power (≥ 1 Watt input) visible-spectrum LEDs

Fig. 2. State-of-art external quantum efficiencies for high-power visible-spectrum LEDs ($T_j=25\,\,^{\circ}\mathrm{C}$): (1) InGaN TFFC LEDs, 350 mA (this paper); (2) InGaN VTF LED, 1000 mA [42]; (3) InGaN CC LEDs employing patterned substrates [35]; and (4) Production performance, AlGaInP TIP LEDs [9], Philips Lumileds Lighting Co., 350 mA. $V(\lambda)$ is the luminous eye response curve from CIE. Dashed lines are guides to the eye.

Efficiency Droop and the Green Gap

 Efficiency droop and the green gap—the same underlying device physics problem

Fig. 2. State-of-art external quantum efficiencies for high-power visible-spectrum LEDs ($T_{\vec{r}}=25~^{\rm B}{\rm C}$): (1) InGaN TFFC LEDs, 350 mA (this paper); (2) InGaN VTF LED, 1000 mA [42]; (3) InGaN CC LEDs employing patterned substrates [35]; and (4) Production performance, AlGaInPTIP LEDs [9], Philips Lumileds Lighting Co., 350 mA. $V(\lambda)$ is the luminous eye response curve from CIE. Dashed lines are guides to the eye.

FIG. 3. Calculated internal quantum efficiency versus current density for c-plane [(a) and (b)] and m-plane [(c) and (d)] growth, under zero bias [(a) and (c)] or a 3.5 V applied voltage [(b) and (d)]. The polar c-plane device shows the characteristic droop and green-gap problems (b). The nonpolar m-plane LED displays much better performance (d).

Krames, et al., IEEE J. Display Technology 3, 160 (2007)

Kioupakis, et al., Appl. Phys. Lett. 101, 231107 (2012)

Next Generation LED-based Bulbless Luminaires

Today's LED bulbs will morph into ...

Bulb-less, free form luminaires

Bulb-less, luminous wall coverings

Remove Barriers to RGB+ Lighting

- High-efficiency green LEDs & temperature-stable highefficiency red LEDs
 - Nanowires
 - Engineered substrates
 - Bulk m-plane substrates
 - Etc.
- A demonstration of a high-quality RGB+ lighting system
 - Flux, lm/W, color stability, color tunability
 - A system for office or commercial lighting; not decorative lighting
 - Address skepticism about efficiency, lifetime, and value of tunability
- An open standard for system control
 - Reduce market fragmentation

